Variational Equivalence between Ginzburg-landau, Xy Spin Systems and Screw Dislocations Energies

نویسنده

  • ROBERTO ALICANDRO
چکیده

We introduce and discuss discrete two-dimensional models for XY spin systems and screw dislocations in crystals. We prove that, as the lattice spacing ε tends to zero, the relevant energies in these models behave like a free energy in the complex Ginzburg-Landau theory of superconductivity, justifying in a rigorous mathematical language the analogies between screw dislocations in crystals and vortices in superconductors. To this purpose, we introduce a notion of asymptotic variational equivalence between families of functionals in the framework of Γ-convergence. We then prove that, in several scaling regimes, the complex Ginzburg-Landau, the XY spin system and the screw dislocation energy functionals are variationally equivalent. Exploiting such an equivalence between dislocations and vortices, we can show new results concerning the asymptotic behavior of screw dislocations in the | log ε| energetic regime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metastability and Dynamics of Discrete Topological Singularities in Two Dimensions: a Γ-convergence Approach

This paper aims at building a variational approach to the dynamics of discrete topological singularities in two dimensions, based on Γconvergence. We consider discrete systems, described by scalar functions defined on a square lattice and governed by periodic interaction potentials. Our main motivation comes from XY spin systems, described by the phase parameter, and screw dislocations, describ...

متن کامل

Variational analysis of the asymptotics of the XY model

In this paper we consider the XY (N -dimensional possibly anisotropic) spin type model and, by comparison with a Ginzburg-Landau type functional, we perform a variational analysis in the limit when the number of particles diverges. In particular we show how the appearance of vortex-like singularities can be described by properly scaling the energy of the system through a Γ-convergence procedure...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

An Equivalence Relation for the Ginzburg-landau Equations of Superconductivity

Gauge invariance is used to establish an equivalence relation between solutions of the time-independent and time-dependent Ginzburg-Landau equations that describe the same physical state of a superconductor. The equivalence relation shows how equilibrium conngurations are obtained as large-time asymptotic limits of solutions of the time-dependent Ginzburg-Landau equations.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009